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Chapter 1

About this Manual

fun is a purely-functional instruction set architecture that defines a language based on
structured combinators, for applications where isolation, purity and the way computation
is actually performed are the central concerns.

This is the first draft of a document that describes the fun instruction-set architecture
(ISA). This manual does not describe any implementation-specific details such as reduction
model, evaluation order or hardware structures such as registers, caches, memories, bus
interfaces, garbage collectors and other memory management units.

This document is open to contributions from anyone interested to participate in the
fun project, and as such, it is a wok in progress. The information contained in this manual
may change as the architecture and its implementations evolve.

Other relevant material about fun should be also available on the project wiki, at
http://wiki.fun-arch.org.

If you wish to contribute on this manual or the wiki, send a request to the email
join@fun-arch.org.
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Chapter 2

Introduction

2.1 Features

fun is a purely-functional instruction set architecture that defines a language based on
structured combinators, for applications where isolation, purity and the way computation
is actually performed are the central concerns. fun is:

• An open, free and community-driven instruction-set architecture;

• The first purely-functional instruction set based on combinators to follow a modern,
proven path of other RISC architectures;

• A purely-functional instruction set for which memory handling, control flow and other
stateful and effectful behaviors is unrepresentable.

• An instruction set for efficient implementation of high-level purely-functional pro-
gramming languages.
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Chapter 3

A Timeline of Functional
Programming and
Machine-Support for Functional
Programming

3.1 Foundations

• 1924 – M.Schonfinkel: Uber die Bausteine der Mathematischen Logik

• 1930 – H.B.Curry: Grundlagen der Kombinatorischen Logik

• 1934 – H.B.Curry: Functionality in Combinatory Logic

• 1958 – H.B.Curry, R.Feys: Combinatory Logic (Book)

3.2 Technology Trigger

• 1971 – C.P.Wadsworth: Semantics and Pragmatics of the λ-calculus

• 1977 – J.Backus: Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs

• 1979 – D.Turner: A new Implementation Technique for Applicative Languages

• 1979 – D.Turner: Another Algorithm for Bracket Abstraction

• 1982 – D.Turner: Miranda
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Figure 3.1: Hype cycle

3.3 Peak of Inflated Expectations

LISP Machines

Combinator Architectures

• 1980 – T.J.W.Clarke: SKIM – The S, K, I Reduction Machine

• 1984 – W.R.Stoye: Some Practical Methods for Rapid Combinator Reduction

• 1985 – W.Stoye: Message-based Functional Operating Systems

• 1986 – M.Scheevel: NORMA, A Graph Reduction Processor

• 1986 – J.Ramsdell: The CURRY chip

• 1990 – P.J.Koopman: Implementation of the TIGRE Machine
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Parallel & Dataflow

• 197? – Arvind: Dataflow

• 1986 – C.Clack, SPJ: The Four-stroke Reduction Engine

• 1988 – SPJ,et al: GRIP

3.4 Disillusionment

Functional Programming in Stock Hardware

• 1982 – J.Hughes: Supercombinators- A new implementation method for applicative
languages

• 1984 – G-Machine

• 1987 – Spineless Tagless G-machine

• 1987 – Haskell

3.5 Enlightment

• Category Theory: Morphisms

• Haskell, OCaml, Erlang, Elm: real-world functional programming languages

• Mainstream FP: Immutable data, higher-order functions on Python, JavaScript,
Java, C++

• Industrial use of FP: Specification, theorem proofing, finance, safety

3.6 Reattempts

• 2007 – Naylor: Reduceron

• 2010 – Naylor: Reduceron Reconfigured

• 2017 – McMahan: An Architecture Supporting Formal and Compositional Binary
Analysis (Zarf)

• 2020 – Pope: Cephalopode

• 2020 – Coelho: ACQuA
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Chapter 4

Combinator Graph Reduction

This chapter is a stub for a discussion on Combinator Graph Reduction.
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Chapter 5

Instruction Formats

This chapter describes the instruction encoding of the fun ISA, its formats and types.
fun instructions are divided into 4 types (C/I2/A/V), as depicted in Fig.5.1. Each

instruction fits a 36-bit word, with a 4-bit tag, and a 36-bit payload. Each tag is composed
by an eval bit EV and a type identifier (OP/LIT/LINK/HLINK/ROOT). Table5.1 lists
the base types for fun , as of version 0.1.

A fun instruction can be seen as a graph node for evaluation following a graph reduction
strategy.

35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 5 4 0

EV OP a6 a5 a4 a3 a2 a1 arity type opcode C-type

EV OP imm[31:11] type opcode I2-type

EV OP 0 type opcode A-type

EV LIT Integer/ Float[31:0]/ Complex{Im[31:16],Re[15:0]} V-type

EV LINK Address[31:0] V-type

EV HLINK Address[31:0] V-type

Figure 5.1: Instruction formats for Fun, extended with RISC-V base instructions. A
tag[34:32] indicates the type of the instruction.

Type LINK and HLINK identify references to other nodes or strings of combinators.
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Table 5.1: Basic types
Type Encoding

LINK 011
HLINK 110
LIT 001
OP 010
ROOT 111

Type LINK is reserved for references made a compile time, by a programmer or compiler,
for references to other nodes on the program graph (subgraphs, functions or bus locations).

Type HLINK is reserved for references made on runtime by a fun CPU, and should not
be declared on the initial program graph.

Type OP is reserved for combinators and other operations for integer arithmetic, floating-
point arithmetic, bitwise boolean logic, input-output, and other types defined in the base
ISA specification.

Type LIT is reserved for pure integer or single-precision floating-point values.
Type ROOT is reserved to identify the root node of a program graph.
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Chapter 6

Combinators

Combinators are instructions of type C that operate on the program graph changing its
structure, following the rules specified in the instruction body.

A reduction rule is specified by the reduction pattern, arity and the contents of each
new graph node after reduction.

The base specification for fun supports up to 64 reduction patterns, listed on Appendix
A.

35 34 32 31 0 34 32 34 32 34 32 34 32 34 32 34 32 10 5 4 0

ev type a6 a5 a4 a3 a2 a1 arity pattern opcode

1 3 3 3 3 3 3 3 3 6 5
EV OP a6 a5 a4 a3 a2 a1 num T0-T63 COMBI
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Chapter 7

Integer Instructions

This chapter is a stub for a detailed description of the instructions for integer arithmetic
and logic of the fun ISA.
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Chapter 8

Floating-Point Instructions

This chapter is a stub for a detailed description of the instructions for floating-point arith-
metic of the fun ISA.
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Chapter 9

Input-Output

This chapter is a stub for a detailed description of the instructions and mechanisms for
I/O in fun .
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Chapter 10

Floating-Point Instructions

This chapter is a stub for a detailed description of the instructions for floating-point arith-
metic of the fun ISA.
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Chapter 11

Instruction Listings

The listing for the base set of fun instructions is shown on Table 11.1.
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35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 5 4 0

EV OP a6 a5 a4 a3 a2 a1 arity type opcode C-type
EV OP imm[31:11] type opcode I2-type
EV OP 0 type opcode A-type

Base Instruction Set
EV OP a6 a5 a4 a3 a2 a1 arity type 11000 combi

EV 010 0 000000 10001 add
EV 010 0 000001 10001 sub
EV 010 0 000011 10001 sll
EV 010 0 000111 10001 srl
EV 010 0 001000 10001 sra
EV 010 0 001011 10001 mul
EV 010 0 001111 10001 div
EV 010 0 010001 10001 rem
EV 010 0 010101 10001 eq
EV 010 0 010110 10001 gt
EV 010 0 010111 10001 lt
EV 010 0 001010 10001 and
EV 010 0 001011 10001 or
EV 010 0 001100 10001 xor

EV 010 imm[31:11] 000000 10011 addi
EV 010 imm[31:11] 000011 10011 slli
EV 010 imm[31:11] 000111 10011 srli
EV 010 imm[31:11] 001000 10011 srai
EV 010 imm[31:11] 001011 10011 muli
EV 010 imm[31:11] 001111 10011 divi
EV 010 imm[31:11] 010001 10011 remi
EV 010 imm[31:11] 010101 10011 eqi
EV 010 imm[31:11] 010110 10011 gti
EV 010 imm[31:11] 010111 10011 lti
EV 010 imm[31:11] 001010 10011 andi
EV 010 imm[31:11] 001011 10011 ori
EV 010 imm[31:11] 001100 10011 xori

EV 010 0 000001 11110 fix
EV 010 0 000100 11110 seq
EV 010 0 010000 11110 out
EV 010 0 001010 11110 break

Table 11.1: Instruction listing for fun
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