
The fun Instruction-set Architecture Manual

v.0.1

Contributors and affiliations (in alphabetical order) : Cecil Accetti (SJTU), Peilin Liu
(SJTU), Eshton Robateau, Da Shi (SJTU), Rendong Ying (SJTU).

This document is released under a Creative Commons Attribution 4.0 International
License.

1

Contents

1 About this Manual 3

2 Introduction 4
2.1 Features . 4

3 A Timeline of Functional Programming and Machine-Support for Func-
tional Programming 5
3.1 Foundations . 5
3.2 Technology Trigger . 5
3.3 Peak of Inflated Expectations . 6
3.4 Disillusionment . 7
3.5 Enlightment . 7
3.6 Reattempts . 7

4 Combinator Graph Reduction 8

5 Instruction Formats 9

6 Combinators 11

7 Integer Instructions 12

8 Floating-Point Instructions 13

9 Input-Output 14

10 Floating-Point Instructions 15

11 Instruction Listings 16

2

Chapter 1

About this Manual

fun is a purely-functional instruction set architecture that defines a language based on
structured combinators, for applications where isolation, purity and the way computation
is actually performed are the central concerns.

This is the first draft of a document that describes the fun instruction-set architecture
(ISA). This manual does not describe any implementation-specific details such as reduction
model, evaluation order or hardware structures such as registers, caches, memories, bus
interfaces, garbage collectors and other memory management units.

This document is open to contributions from anyone interested to participate in the
fun project, and as such, it is a wok in progress. The information contained in this manual
may change as the architecture and its implementations evolve.

Other relevant material about fun should be also available on the project wiki, at
http://wiki.fun-arch.org.

If you wish to contribute on this manual or the wiki, send a request to the email
join@fun-arch.org.

3

Chapter 2

Introduction

2.1 Features

fun is a purely-functional instruction set architecture that defines a language based on
structured combinators, for applications where isolation, purity and the way computation
is actually performed are the central concerns. fun is:

• An open, free and community-driven instruction-set architecture;

• The first purely-functional instruction set based on combinators to follow a modern,
proven path of other RISC architectures;

• A purely-functional instruction set for which memory handling, control flow and other
stateful and effectful behaviors is unrepresentable.

• An instruction set for efficient implementation of high-level purely-functional pro-
gramming languages.

4

Chapter 3

A Timeline of Functional
Programming and
Machine-Support for Functional
Programming

3.1 Foundations

• 1924 – M.Schonfinkel: Uber die Bausteine der Mathematischen Logik

• 1930 – H.B.Curry: Grundlagen der Kombinatorischen Logik

• 1934 – H.B.Curry: Functionality in Combinatory Logic

• 1958 – H.B.Curry, R.Feys: Combinatory Logic (Book)

3.2 Technology Trigger

• 1971 – C.P.Wadsworth: Semantics and Pragmatics of the λ-calculus

• 1977 – J.Backus: Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs

• 1979 – D.Turner: A new Implementation Technique for Applicative Languages

• 1979 – D.Turner: Another Algorithm for Bracket Abstraction

• 1982 – D.Turner: Miranda

5

Figure 3.1: Hype cycle

3.3 Peak of Inflated Expectations

LISP Machines

Combinator Architectures

• 1980 – T.J.W.Clarke: SKIM – The S, K, I Reduction Machine

• 1984 – W.R.Stoye: Some Practical Methods for Rapid Combinator Reduction

• 1985 – W.Stoye: Message-based Functional Operating Systems

• 1986 – M.Scheevel: NORMA, A Graph Reduction Processor

• 1986 – J.Ramsdell: The CURRY chip

• 1990 – P.J.Koopman: Implementation of the TIGRE Machine

6

Parallel & Dataflow

• 197? – Arvind: Dataflow

• 1986 – C.Clack, SPJ: The Four-stroke Reduction Engine

• 1988 – SPJ,et al: GRIP

3.4 Disillusionment

Functional Programming in Stock Hardware

• 1982 – J.Hughes: Supercombinators- A new implementation method for applicative
languages

• 1984 – G-Machine

• 1987 – Spineless Tagless G-machine

• 1987 – Haskell

3.5 Enlightment

• Category Theory: Morphisms

• Haskell, OCaml, Erlang, Elm: real-world functional programming languages

• Mainstream FP: Immutable data, higher-order functions on Python, JavaScript,
Java, C++

• Industrial use of FP: Specification, theorem proofing, finance, safety

3.6 Reattempts

• 2007 – Naylor: Reduceron

• 2010 – Naylor: Reduceron Reconfigured

• 2017 – McMahan: An Architecture Supporting Formal and Compositional Binary
Analysis (Zarf)

• 2020 – Pope: Cephalopode

• 2020 – Coelho: ACQuA

7

Chapter 4

Combinator Graph Reduction

This chapter is a stub for a discussion on Combinator Graph Reduction.

8

Chapter 5

Instruction Formats

This chapter describes the instruction encoding of the fun ISA, its formats and types.
fun instructions are divided into 4 types (C/I2/A/V), as depicted in Fig.5.1. Each

instruction fits a 36-bit word, with a 4-bit tag, and a 36-bit payload. Each tag is composed
by an eval bit EV and a type identifier (OP/LIT/LINK/HLINK/ROOT). Table5.1 lists
the base types for fun , as of version 0.1.

A fun instruction can be seen as a graph node for evaluation following a graph reduction
strategy.

35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 5 4 0

EV OP a6 a5 a4 a3 a2 a1 arity type opcode C-type

EV OP imm[31:11] type opcode I2-type

EV OP 0 type opcode A-type

EV LIT Integer/ Float[31:0]/ Complex{Im[31:16],Re[15:0]} V-type

EV LINK Address[31:0] V-type

EV HLINK Address[31:0] V-type

Figure 5.1: Instruction formats for Fun, extended with RISC-V base instructions. A
tag[34:32] indicates the type of the instruction.

Type LINK and HLINK identify references to other nodes or strings of combinators.

9

Table 5.1: Basic types
Type Encoding

LINK 011
HLINK 110
LIT 001
OP 010
ROOT 111

Type LINK is reserved for references made a compile time, by a programmer or compiler,
for references to other nodes on the program graph (subgraphs, functions or bus locations).

Type HLINK is reserved for references made on runtime by a fun CPU, and should not
be declared on the initial program graph.

Type OP is reserved for combinators and other operations for integer arithmetic, floating-
point arithmetic, bitwise boolean logic, input-output, and other types defined in the base
ISA specification.

Type LIT is reserved for pure integer or single-precision floating-point values.
Type ROOT is reserved to identify the root node of a program graph.

10

Chapter 6

Combinators

Combinators are instructions of type C that operate on the program graph changing its
structure, following the rules specified in the instruction body.

A reduction rule is specified by the reduction pattern, arity and the contents of each
new graph node after reduction.

The base specification for fun supports up to 64 reduction patterns, listed on Appendix
A.

35 34 32 31 0 34 32 34 32 34 32 34 32 34 32 34 32 10 5 4 0

ev type a6 a5 a4 a3 a2 a1 arity pattern opcode

1 3 3 3 3 3 3 3 3 6 5
EV OP a6 a5 a4 a3 a2 a1 num T0-T63 COMBI

11

Chapter 7

Integer Instructions

This chapter is a stub for a detailed description of the instructions for integer arithmetic
and logic of the fun ISA.

12

Chapter 8

Floating-Point Instructions

This chapter is a stub for a detailed description of the instructions for floating-point arith-
metic of the fun ISA.

13

Chapter 9

Input-Output

This chapter is a stub for a detailed description of the instructions and mechanisms for
I/O in fun .

14

Chapter 10

Floating-Point Instructions

This chapter is a stub for a detailed description of the instructions for floating-point arith-
metic of the fun ISA.

15

Chapter 11

Instruction Listings

The listing for the base set of fun instructions is shown on Table 11.1.

16

35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 5 4 0

EV OP a6 a5 a4 a3 a2 a1 arity type opcode C-type
EV OP imm[31:11] type opcode I2-type
EV OP 0 type opcode A-type

Base Instruction Set
EV OP a6 a5 a4 a3 a2 a1 arity type 11000 combi

EV 010 0 000000 10001 add
EV 010 0 000001 10001 sub
EV 010 0 000011 10001 sll
EV 010 0 000111 10001 srl
EV 010 0 001000 10001 sra
EV 010 0 001011 10001 mul
EV 010 0 001111 10001 div
EV 010 0 010001 10001 rem
EV 010 0 010101 10001 eq
EV 010 0 010110 10001 gt
EV 010 0 010111 10001 lt
EV 010 0 001010 10001 and
EV 010 0 001011 10001 or
EV 010 0 001100 10001 xor

EV 010 imm[31:11] 000000 10011 addi
EV 010 imm[31:11] 000011 10011 slli
EV 010 imm[31:11] 000111 10011 srli
EV 010 imm[31:11] 001000 10011 srai
EV 010 imm[31:11] 001011 10011 muli
EV 010 imm[31:11] 001111 10011 divi
EV 010 imm[31:11] 010001 10011 remi
EV 010 imm[31:11] 010101 10011 eqi
EV 010 imm[31:11] 010110 10011 gti
EV 010 imm[31:11] 010111 10011 lti
EV 010 imm[31:11] 001010 10011 andi
EV 010 imm[31:11] 001011 10011 ori
EV 010 imm[31:11] 001100 10011 xori

EV 010 0 000001 11110 fix
EV 010 0 000100 11110 seq
EV 010 0 010000 11110 out
EV 010 0 001010 11110 break

Table 11.1: Instruction listing for fun

17

Bibliography

[1] The unlambda programming language. http://www.madore.org/~david/programs/
unlambda/. Accessed: 2018-8-5.

[2] Andrea Asperti, Cecilia Giovanetti, and Andrea Naletto. The bologna optimal higher-
order machine. J. Funct. Program., 6(6):763–810, 1996.

[3] Lex Augusteijn. Sorting morphisms. In Advanced Functional Programming. Springer,
1999.

[4] Lennart Augustsson. Bwm: A concrete machine for graph reduction. In Proceed-
ings of the 1991 Glasgow Workshop on Functional Programming, pages 36–50, Berlin,
Heidelberg, 1992. Springer-Verlag.

[5] John Backus. Can programming be liberated from the von neumann style?: A func-
tional style and its algebra of programs. Commun. ACM, 1978.

[6] R. S. Bird. Algebraic identities for program calculation. The Computer Journal,
32(2):122–126, 1989.

[7] Arjan Boeijink, Philip K. F. Hölzenspies, and Jan Kuper. Introducing the pilgrim: A
processor for executing lazy functional languages. In Implementation and Application
of Functional Languages. Springer, 2011.

[8] U. Boquist and T. Johnsson. The grin project: A highly optimising back end for lazy
functional languages. In Implementation of Functional Languages. Springer, 1997.

[9] Sabine Broda and Lúıs Damas. Compact bracket abstraction in combinatory logic.
The Journal of Symbolic Logic, 62, 1997.

[10] T. J.W. Clarke, P. J.S. Gladstone, C. D. MacLean, and A. C. Norman. Skim - the
s, k, i reduction machine. In Proceedings of the 1980 ACM Conference on LISP and
Functional Programming, LFP ’80, 1980.

[11] Antoni Diller. Efficient multi-variate abstraction using an array representation for
combinators. Inf. Process. Lett., 84:311–317, 2002.

18

http://www.madore.org/~david/programs/unlambda/
http://www.madore.org/~david/programs/unlambda/

[12] Antoni Diller. Efficient bracket abstraction using iconic representations for combina-
tors. 2011.

[13] Conal Elliott. Compiling to categories. Proc. ACM Program. Lang., 2017.

[14] Ricardo Coelho et al. Acqua:a parallel accelerator architecture for pure functional
programs. In Proc.IEEE Comp.Soc.Annual Symp.on VLSI, 2020.

[15] Federico Flaviani and Elias Tahhan-Bittar. Criteria for bracket abstractions design.
In CLEI Selected Papers, 2020.

[16] Donald I. Good. Provable programming. In Proceedings of the International Confer-
ence on Reliable Software, pages 411–419, New York, NY, USA, 1975. ACM.

[17] E. Goto, T. Soma, N. Inada, T. Ida, M. Idesawa, K. Hiraki, M. Suzuki, K. Shimizu,
and B. Philipov. Design of a lisp machine - flats. In Proceedings of the 1982 ACM
Symposium on LISP and Functional Programming, LFP ’82, pages 208–215, New
York, NY, USA, 1982. ACM.

[18] A. J. Harris and J. R. Hayes. Functional programming on a stack-based embedded
processor. In 2nd IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT’06), pages 7 pp.–424, July 2006.

[19] Pieter H. Hartel and Arthur H. Veen. Statistics on graph reduction of sasl programs.
Softw. Pract. Exper., 18(3), 1988.

[20] Nevin Heintze and Jon G. Riecke. The slam calculus: Programming with secrecy and
integrity. In Proc. 25th ACM SIGPLAN-SIGACT Symp. POPL. ACM, 1998.

[21] Paul Hudak and Benjamin Goldberg. Serial combinators: “optimal” grains of paral-
lelism. In Proc. of a Conference on Functional Programming Languages and Computer
Architecture. Springer-Verlag, 1985.

[22] John Hughes. Why functional programming matters. The Computer Journal, 32(2),
1989.

[23] R. J. M. Hughes. Super-combinators a new implementation method for applicative
languages. In Proc.1982 ACM Symp.LISP and Functional Programming. ACM, 1982.

[24] Thomas Johnsson. Efficient compilation of lazy evaluation. In Proceedings of the 1984
SIGPLAN Symposium on Compiler Construction, SIGPLAN ’84. ACM, 1984.

[25] Neil D. Jones and Steven S. Muchnick. A fixed-program machine for combinator
expression evaluation. In Proceedings of the 1982 ACM Symposium on LISP and
Functional Programming, LFP ’82, pages 11–20, New York, NY, USA, 1982. ACM.

19

[26] Simon L Peyton Jones. An investigation of the relative efficiencies of combinators and
lambda expressions. In Proc.1982 ACM Symp.LISP and Functional Programming,
page 150–158. ACM, 1982.

[27] Richard B. Kieburtz. The g-machine: A fast, graph-reduction evaluator. In Jean-Pierre
Jouannaud, editor, Functional Programming Languages and Computer Architecture,
pages 400–413, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[28] Richard B. Kieburtz. A risc architecture for symbolic computation. In Proc.2nd
Int.Conf.Architectural Support for Programming Languages and Operating Systems.
IEEE Comp.Soc.Press, 1987.

[29] Oleg Kiselyov. λ to ski, semantically - declarative pearl. In Proc.14th
Int.Symp.Functional and Logic Programming, 2018.

[30] Philip John Koopman. Implementation of the tigre machine. In An Architecture for
Combinator Graph Reduction. Academic Press, 1990.

[31] Lukasz Lachowski. On the complexity of the standard translation of lambda calculus
into combinatory logic. Reports Math. Log., 53:19–42, 2018.

[32] P. J. Landin. The next 700 programming languages. Commun. ACM, 9(3):157–166,
March 1966.

[33] Rafael D. Lins. Categorical multi-combinators. In Proc. of a Conference on Functional
Programming Languages and Computer Architecture. Springer-Verlag, 1987.

[34] R. Machado. An introduction to lambda calculus and functional programming. In
2013 2nd Workshop-School on Theoretical Computer Science, pages 26–33, Oct 2013.

[35] Joseph McMahan, Michael Christensen, Lawton Nichols, Jared Roesch, Sung-Yee Guo,
Ben Hardekopf, and Timothy Sherwood. An architecture supporting formal and com-
positional binary analysis. In Proc. 22nd ASPLOS. ACM, 2017.

[36] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Functional Programming Languages
and Computer Architecture. Springer, 1991.

[37] D. Moon. Symbolics architecture. Computer, 20(1):43–52, Jan 1987.

[38] M.W.Bunder. Some improvements to turner’s algorithm for bracket abstraction.
J.Symb.Log., 55, 1990.

[39] Matthew Naylor and Colin Runciman. The reduceron: Widening the von neumann
bottleneck for graph reduction using an fpga. In Olaf Chitil, Zoltán Horváth, and
Viktória Zsók, editors, Implementation and Application of Functional Languages,
pages 129–146, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

20

[40] Matthew Naylor and Colin Runciman. The reduceron reconfigured. In Proc.15th ACM
SIGPLAN Int.Conf.on Functional Programming, 2010.

[41] Matthew Naylor and Colin Runciman. The reduceron reconfigured and re-evaluated.
Journal of Functional Programming, 22(4-5):574–613, 2012.

[42] S. L. Peyton Jones. Grip; a parallel processor for functional languages. Electronics
and Power, 33(10):633–636, October 1987.

[43] S. L. Peyton Jones and J. Salkild. The spineless tagless g-machine. In Proceedings
of the Fourth International Conference on Functional Programming Languages and
Computer Architecture, FPCA ’89, pages 184–201, New York, NY, USA, 1989. ACM.

[44] Simon Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall, January 1987.

[45] Jeremy Pope, Jules Saget, and Carl-Johan H. Seger. Cephalopode: A custom processor
aimed at functional language execution for iot devices. In 2020 18th ACM-IEEE
Int.Conf.Formal Methods and Models for System Design (MEMOCODE), 2020.

[46] Alejandro Russo. Functional pearl: Two can keep a secret, if one of them uses haskell.
SIGPLAN Not., 2015.

[47] Mark Scheevel. Norma: A graph reduction processor. In Proceedings of the 1986 ACM
Conference on LISP and Functional Programming.

[48] Moses. Schönfinkel. Uber der bausteine der mathematischen logic. Math. Annalen,
92(3), 1924.

[49] R. Stewart, E. Belikov, and H.W. Loidl. Graph reduction hardware revisited. In
Trends in Functional Programming 2018, 2018.

[50] W. R. Stoye, T. J. W. Clarke, and A. C. Norman. Some practical methods for rapid
combinator reduction. In Proc. 1984 ACM Symp.on LISP and Functional Program-
ming, 1984.

[51] William Stoye. Message-based functional operating systems. Science of Computer
Programming, 6:291 – 311, 1986.

[52] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe haskell.
In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages 137–148, New York,
NY, USA, 2012. ACM.

[53] D. A. Turner. A new implementation technique for applicative languages. Software:
Practice and Experience, 9(1), 1979.

21

[54] D. A. Turner. The semantic elegance of applicative languages. In Proceedings of the
1981 Conference on Functional Programming Languages and Computer Architecture,
FPCA ’81, pages 85–92, New York, NY, USA, 1981. ACM.

[55] D. A. Turner. Some history of functional programming languages. In Trends in
Functional Programming, 2013.

[56] David Turner. Another algorithm for bracket abstraction. J. Symb. Log., 44, 1979.

[57] Philip Wadler. How enterprises use functional languages, and why they don’t. 07
2008.

22

	About this Manual
	Introduction
	Features

	A Timeline of Functional Programming and Machine-Support for Functional Programming
	Foundations
	Technology Trigger
	Peak of Inflated Expectations
	Disillusionment
	Enlightment
	Reattempts

	Combinator Graph Reduction
	Instruction Formats
	Combinators
	Integer Instructions
	Floating-Point Instructions
	Input-Output
	Floating-Point Instructions
	Instruction Listings

