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Structured Combinators for Efficient Graph Reduction
Cecil Accetti, Rendong Ying, and Peilin Liu

Abstract—Combinators have a long history in mathematics, logic and computer science, as simple primitive symbols with which
complex relationships can be described. In practice, this simplicity comes with a cost, impacting the performance of combinator-based
languages and computers. We propose a generalized representation for combinators, not as primitives, but as self-contained
definitions, where the structure of their graph-reduction semantics is explicit. For a sample of 798 unique lambda-terms from common
benchmark programs, we show that structured combinators can improve the quality of compiled code, generating smaller and more
efficient graphs, while translating seamlessly to a machine-friendly encoding, as part of the open-source fun instruction-set architecture.

Index Terms—applicative (functional) programming, instruction set design, compilers
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1 INTRODUCTION

WHEN looking for ways to minimize the number of fun-
damental notions of logic and mathematics, Schönfinkel

discovered a calculus of primitive higher-order functions, or
combinators [1]. With this calculus, he was able to simplify
computable functions by abstracting their variables, replacing
them for combinators. Applied to practical computing [2], [3],
[4], a language of combinators makes for an interesting purely-
functional instruction-set architecture (ISA), devoid of variable-
handling and control-flow instructions such as push, load, store,
move, branches and jumps. Furthermore, as a formal model, it
also inherits beneficial meta-programming properties of the
λ-calculus [5]. At a time of growing concerns on computer
safety and security [6], it is worth considering these and other
offerings of combinatory logic and of functional programming
as a whole, as a more solid foundation for computing – or at
least as an option for the applications in need [7], [8], [9].

The problem of combinators, however, lies in their imple-
mentation. If we employ the same minimal combinator sets from
the theory (Table 1) on a graph-reduction machine, as in [2], [3],
[4], [8], [9], the results are programs of ”disastrous size” [10],
”often much larger” [11] than the original λ-forms. Multiple
solutions to this problem have been proposed, ranging from
extended combinator sets and term-rewrite rules, to alternative
combinatory systems and abstraction algorithms. Still, most
of these works have preserved the idea of minimal sets of
primitive combinators [8], [9], [10], [12], [13], [14], [15].

Contributions. In this letter we take a fresh look at combi-
natory growth from a hardware design perspective, by defining
a combinatorial representation that reflects the structure of
program-graph transformations. We encode these structured
combinators as instructions of the open fun instruction-set
architecture, alongside an optimizing compiler flow (Section
2). We investigate the ISA-dependent performance of graph
reduction – the size and shape of program-graphs, and the
number of reduction steps and allocated graph nodes during
evaluation [16] – using an FPGA-based fun graph-reducer CPU
(Section 3). For a sample of 21 programs from [17], [18] and
10 common higher-order functions, we show that structured
combinators enable consistent improvements over primitive
SK-combinators, improving the quality of compiled code with
smaller and more efficient graphs.
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2 A NEW COMBINATORIAL REPRESENTATION

We start our discussion with an analogy to imperative pro-
gramming. The primitive notion of any imperative ISA is the
storage cell. Instructions can operate on storage cells, copying
or overwriting their contents until a desired state is met, but are
just derivations from the idea that values are bound to specific
memory or register locations. Likewise, for a purely-functional
graph reducer [8], [9], we can expect the primitive notion to
be the graph node and not a combinator (the instruction).
Nodes make up the graph, while combinators merely modify
the structure of the graph according to some fixed rule. Despite
this, previous works have prioritized the language side, first
defining a combinator set and abstraction algorithm to then
derive a tailored abstract (physical) machine. Here, we take the
opposite path and derive a language of combinators starting
from the graph transformations they represent at machine level.

2.1 Structured Combinators
To a graph reducer, a combinator is a recipe for a pre-defined
graph transformation. Our approach is to break this recipe
down to three structural elements, namely (1) the arity, (2) the
reduction pattern, and (3) the contents of the new graph nodes.

Definition 1. A structured combinator C is a 3-tuple

C = (t,a, [idx]) = Ct
a[idx]

where a is the arity of the combinator, t is the structural pattern of its
reduction; [idx] is a list of de Bruijn indices of the arguments, as they
appear in order leftmost-outermost traversal of the reduction pattern.

The arity of a combinator is the number of arguments it
consumes from the program graph during reduction, and is
easily inferred from its λ-form (Table 1). A reduction pattern
is an empty sub-graph, the result of lifting the structure of a
function body from its actual content, e.g. from λabc.+(+ab)c
to x(xxx)x, where x denote an empty graph node. While the
content of these sub-graphs change from program to program,
their structures (patterns, on Table 1) are often recurrent, espe-
cially on higher-order functions [19].

Structured combinators (SC) can be seen as a bounded-
form of program-defined super-combinators [20], limited in
grain [11] by the reduction patterns implemented in a target
machine. SCs are equivalent to the untyped λ-calculus with de
Bruijn indices, and can be used to represent SK-combinators,
categorical combinators [21] and other equivalent combinatory
systems (Table 1). In operational terms, SCs are not different
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TABLE 1
Some SK- and Categorical Combinators in structured form [2], [21]

SK λ-form Pattern Structured Form
S λabc. ac(bc) xx(xx) C

xx(xx)

3[0,2,1,2]

K λab. a x Cx
2[0]

I λa. a x Cx
1[0]

B λabc. a(bc) x(xx) C
x(xx)

3[0,1,2]

C λabc. acb xxx Cxxx
3[0,2,1]

S’ λabcd. a(bd)(cd) x(xx)(xx) C
x(xx)(xx)

4[0,1,3,2,3]

C’ λabcd. a(bd)c x(xx)x C
x(xx)x

4[0,1,3,2]

B’ λabcd. ab(cd) xx(xx) C
xx(xx)

4[0,1,2,3]

CCC
pair λabf. f a b xxx Cxxx

3[2,0,1]

◦ λfga. f(ga) x(xx) C
x(xx)

3[0,1,2]

△ λfga. (fa,ga) x(xx)(xx) C
x(xx)(xx)

4[3,0,2,1,2]

curry λfab. f (a,b) x(xxx) C
x(xxx)

4[1,0,2,3](pair)

uncurry λfp. p f xx Cxx
2[1,0]

from primitive combinators, and pose no limitations regarding
evaluation order, be it strict, normal or lazy.

2.2 Encoding
The elements of a SC map to RISC-like instruction fields in a
straightforward manner, as shown below.

λxyzt. t z y x ⇒ λ4.3210 ⇒ Cxxxx
4[3,2,1,0]

35 34 32 31 0 34 32 34 32 34 32 34 32 34 32 34 32 10 5 4 0

TAG 000 000 000 001 010 011 100 T7 (xxxx) opcode
1 3 3 3 3 3 3 3 3 6 5

EV OP idx6 idx5 idx4 idx3 idx2 idx1 arity T0-T63 COMBI

Starting from a typical a 32-bit word, we allocate 6 bits for
a pattern identifier field, allowing the support of 64 reduction
patterns with up to 6 nodes, from x (Type 0) to xxxxxx (Type
63). The arity field sets a maximum of 8 arguments (3 bits),
and 6 3-bit index fields encode the list of deBruijn indices of
a given reduction rule. As instructions for fun, a 5-bit opcode
field completes the 32-bit word, with an additional 3-bit tag for
identification of the type of the graph node: operation (OP),
literal (lit) or indirection node (link). The EV bit marks the
leftmost-outermost node of a subgraph.

2.3 Compilation
The translation between functions in (de Bruijn) λ-form and
SCs is done in four phases: atom lifting, pattern matching,
abstraction and unification (Fig.1 and Fig.3A).

Atom lifting (liftAtoms) removes atoms (links to other
functions, constants, and built-in operations such as +, -, etc.)
from already λ-lifted functions, resulting in a pair consisting in
a higher-order super-combinator and a list of atoms.

During the pattern matching phase (match), the structure
of the lifted super-combinator is compared to the reduction
patterns supported by the target ISA (64 patterns for 36-bit fun
cells). If pattern-matching succeeds, the newly-defined struc-
tured combinator is integrated in the original expression, along-
side the lifted constants (apply). If pattern-matching fails, an
abstraction algorithm is employed, followed by an additional
step of unification. In this event, the compiler decomposes
the super-combinator into standard SK-combinators (or CCCs,
SF-combinators, or any other equivalent system) via variable

1 data Exp = Ap Exp Exp -- curried application
2 | Lam Int Exp -- Lambda in de Bruijn notation
3 | C Arity Type [Int] -- structured combinator
4 | Idx Int -- de Bruijn index
5 | Const Cts --constants (Int,+,-,*...)
6 --split expression into supercombinator and [atoms]
7 --liftAtoms (\1.+00) -> (\2.011, [+])
8 liftAtoms :: Int -> Exp -> (Exp, [Exp])
9

10 --Match Exp body to a list of supported patterns
11 --returning either a structured combinator, or
12 --Nothing if pattern match fails
13 match :: Exp -> Maybe Exp
14
15 -- Re-apply lifted atoms to supercombinator
16 -->>apply e [+,1,2] -> Ap (Ap (Ap e +)1)2)
17 apply :: Exp -> [Exp] -> Exp
18
19 --Abstraction:bracket[2],semantic[15],categorical[21]...
20 abstract :: Int -> Exp -> Exp
21
22 --Recursively merge combinators
23 unify :: Exp -> Exp
24
25 -- Convert lambda-form to structured combinators
26 lam2combi :: Exp -> Exp
27 lam2combi (Lam n e)= case(match super)of
28 Just x -> apply x constants
29 Nothing -> unify(abstract n e)
30 where (super,constants) = liftAtoms n e
31 lam2combi (Ap e1 e2)= Ap(lam2combi e1)(lam2combi e2)
32 lam2combi e = e

Fig. 1. A simple compiler from a λ-form to structured combinators.

abstraction, and then merge these components into a maximal
structured form supported by the ISA (unify). For brevity, the
following example illustrates the unification of the term BKK
into a single combinator Cx

3[0] in structured form. The terms in
the right side of the | are arbitrary arguments in applicative
order (de Bruijn indices).

B K K ⇒ C
x(xx)

3[0,1,2] C
x
2[0] C

x
2[0] –SK to structured

C
x(xx)

3[0,1,2] C
x
2[0] C

x
2[0] | 0 1 2 3...n –Apply n arguments

Cx
2[0] (Cx

2[0] 0) | 1 2 3...n –1st reduction C
x(xx)

3[0,1,2]

Cx
2[0] 0 | 2 3 4...n –2nd reduction Cx

2[0]

(0) | 3 4...n –3rd reduction Cx
2[0]

⇒ (Cx
3[0]) –Match: a=3,t=x,[idx]=[0]

Pattern matching and unification effectively define new
combinators without the use of pre-defined term-rewrite rules.
Their effects can be seen on Fig.2, which compares the compiled
graphs for a list-catamorphism (foldr) [19], expressed in tradi-
tional symbolic (Fig.2a) and structured forms (Fig.2b). In this
example, a term (Cxx(xxx)

4[3,2,0,1,2](C
xx(xxxx)

5[1,3,0,1,2,4]x)) replaces a much
larger term (B’(S’C)(CI)(S’(B’C)(Bx))).

2.4 Artifacts

The specification for the fun ISA, programming examples, com-
plete source-code for the compiler from Fig.1 and benchmark-
ing data can be found at http://wiki.fun-arch.org.

3 EVALUATION

3.1 Methodology

We apply a selection of 31 benchmark programs to the compiler
flow of Fig.3. These programs range from simple higher-order
functions of the Haskell standard Prelude library (foldr, map,
zip, etc.) to programs from the imaginary,spectral and real subsets
of the nofib suite and other sources [17], [18], [22], and reflect
typical programming patterns that handle tuples, lists, trees,
grammars and other algebraic data structures.
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Fig. 2. Combinator graphs for foldr + 0 [1,2] in primitive (a) and
structured (b) forms. The graph spine is highlighted in gray;

After desugaring and λ-lifting at the compiler front-end
[20], each program is converted to a λ-form with de Bruijn
indices before translation into structured combinators. Our
experimental compiler embeds three user-selectable back-ends
(Fig.3). Back-end C implements the bracket abstraction algo-
rithm from [2], using the set of SK-combinators from Table 1,
while back-end B implements the semantic abstraction algo-
rithm of [15], limited to combinators SKIBC as described in
the original paper. Back-end A fully explores the structured
combinator notation, via pattern matching and unification.

Runtime measurements were performed via a cycle-
accurate emulator for the Blackbird-II microarchitecture (Fig.4),
double-checked against the RTL model of the CPU, written in
VHDL and synthesized to an Altera/Intel Cyclone IV FPGA.
Blackbird-II is a variant of the Blackbird CPU of [8], with its dat-
apath adapted to structured combinators. It is a 3-stage pipeline
implementation that issues one graph node (instruction or data)
per clock cycle during traversal (search steps) and takes one
clock cycle to execute a combinator reduction (reduction steps),
whenever a reducible combinator is found on the graph.

3.2 Static Analysis: Program Size

We first compare the sizes of compiled program-graphs against
the sizes of the original source program, in λ-form. The size
of a graph is measured in terms of the number of nodes, in
accordance with prior work by Hartel [16]. Fig.5a shows that
for this set of benchmarks, graphs generated by back-end A
are strictly smaller than the source graphs (dotted line). The
same does not occur with graphs generated by back-ends B
and C, which can be 2.10x larger than the source programs
(back-end B, While). Another aspect to consider from the data
at Fig.5a is the loose correlation between source and compiled
sizes for back-ends B and C. While the sizes of source graphs
are presented in ascending order, the outputs of back-ends B
and C are less predictable, with longer programs (e.g. Sudoku)
generating smaller graphs than those generated by shorter
programs (e.g. Sorting), due to inefficient abstraction.

Fig.5b provides a second metric for the quality of static ob-
ject code generated by back-ends A,B and C: the ratio between
graph depth and graph size (depth / size). This value quantifies
how ”well-behaved” is a program-graph, in terms of its shape.
A well-behaved expression [12] is of the form KE1E2, where K
is a term composed only of combinators. In an ideal translation,
K is of the form K1K2K3...Kn, with Kn a subterm composed
of a single combinator. The higher the depth/size ratio, the
easier it is to optimize, during compile-time, and to traverse,
during runtime, as all Ks are allocated on the main spine of the
graph. As illustrated on Fig.2, less efficient translations result
in graphs that spread far from the main spine.

A summary of the static code evaluation is shown on Table
2. From a total of 798 unique lifted functions in λ-form, we find
that 60.5% of these functions fit one of the 64 patterns supported

Fig. 3. Experimental compiler flow. Source code in a subset of Haskell
or F-lite [18] is translated to fun via three user-selectable back-ends: (A)
structured, (B) semantic [15] and (C) bracket abstraction [12]

Fig. 4. The Blackbird-II microarchitecture: Traversal unit with a Graph-
Pointer (GP) register; Instruction Register (IR); A graph spine cache
(S$) stores the 32 most-recently accessed nodes of the graph spine;
integer and floating-point execution datapaths (EX); reduction unit and
two-space copying garbage collector (GC)

by our ISA encoding, and are pattern-matched without addi-
tional abstraction and unification steps. The worst conversions
are shown relative to the size of the source function.

3.3 Dynamic Analysis

We measure three aspects of program evaluation: reduction
steps, search steps and node allocations. Reduction and search
steps have direct influence on execution time, as consequences
of graph size. Node allocation impacts both time and memory
requirements, due to potential pauses for garbage collection.

Fig.6 shows the relative runtime improvement of back-end
A (structured) over back-end C (bracket abstraction) in terms
of reduction steps, search steps and node allocations. Although
single-number statistics for nofib should be taken with a grain
of salt [17], we consider the average for illustrative purposes.
For this set of programs, those compiled through back-end A
require 3.78x less reduction steps, while allocating 2.32x less
graph nodes, in average, than those from back-end C. Fig.6
also shows the relative performance for a selection of common
higher-order functions, operating on lists of 100 integer values,
with a maximum gain of 7.95x for zip3.

Fig. 5. a) Size of programs in λ-form and after compilation by back-ends
A, B and C. b) Depth:size ratio for back-ends A, B and C
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TABLE 2
Statistics for static-code evaluation

#Function Max.Var. Avg.Var. Matched
798 8 2.31 60.5%

Sizes Source A-Semantic A-Bracket B C
Largest 79 78 78 133 78
Mean 6.72 5.85 5.82 11.6 9.11
Median 5 3 3 7 6
σ 6.96 7.67 7.54 13.93 9.49
Worst - 36/21 35/21 21/3 16/3

Fig. 6. Relative improvements on reduction, search and node count for
back-end A over back-end C.

4 LIMITATIONS AND FUTURE DIRECTIONS

On a graph reducer CPU, evaluation time is a result of the
combination of the time spent on search, reduction and garbage
collection. From these three metrics, only reduction count is
immune to microarchitecture-level design decisions, and better
represent ISA-dependent performance, the focus of our discus-
sion. Specific mechanisms for instruction fetch, lazy evaluation
and memory management [3], [9] can have considerable im-
pacts on overall time, but are beyond the scope of this letter.

Execution time is also subject to programming styles and
methods. Fig.7 shows the impact on reduction count of porting
some programs to a style of explicit morphisms [19], [23],
in the order of 155x (!) for exp3 8 and 33.3x for quickSort,
when compared to a recursive SK implementation. While this
is an example of how structured combinators can efficiently
represent higher-order functions such as catamorphisms and
hylomorphisms, further work is needed to define an adequate
benchmark suite in this style and investigate its potential bene-
fits. Since it is difficult to compare our work with experimental
results from 30 [16] or 40 years ago [3], [4], we hope our
measurements could set a new reference point for further re-
search on combinators and architectural support for functional
programming.

5 CONCLUSIONS

Combinators are still interesting, a hundred and one years after
their discovery. In this letter we reformulated their structure as
a way to improve the performance and memory requirements
of a combinator-based ISA. For a sample of 798 unique λ-terms
obtained from common functional benchmarks we have shown
that structured combinators enable a consistent performance
improvement over traditional symbolic representations. In the
context of a renewed interest in hardware-level support for
functional programming to improve the safety and security
of computer systems, we encode structured combinators as
part of fun: a purely-functional instruction set. With an open-
source architecture like fun, the door is now open for further
improvements at microarchitecture and compiler levels.

Fig. 7. Performance comparison of programs written as explicit recursive
functions and as morphisms, in terms of reduction steps (normalized)
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